
Research in Nursing & Health, 2012, 35, 82–93

Statistical Process Control in
Nursing Research

Denise F. Polit,1,2* Wendy Chaboyer2**

1Humanalysis, Inc., 75 Clinton Street, Saratoga Springs, NY 12866
2Griffith University School of Nursing, Gold Coast, Australia

Accepted 10 October 2011

Abstract: In intervention studies in which randomization to groups is not
possible, researchers typically use quasi-experimental designs. Time
series designs are strong quasi-experimental designs but are seldom used,
perhaps because of technical and analytic hurdles. Statistical process
control (SPC) is an alternative analytic approach to testing hypotheses
about intervention effects using data collected over time. SPC, like
traditional statistical methods, is a tool for understanding variation and
involves the construction of control charts that distinguish between
normal, random fluctuations (common cause variation), and statistically
significant special cause variation that can result from an innovation. The
purpose of this article is to provide an overview of SPC and to illustrate its
use in a study of a nursing practice improvement intervention. � 2011 Wiley
Periodicals, Inc. Res Nurs Health 35:82–93, 2012
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Randomized controlled trial (RCT) designs
are widely considered the gold standard for
testing the effects of an intervention (Polit &
Beck, 2012; Shadish, Cook, & Campbell, 2002).
However, in many intervention trials in nursing
and other health disciplines—and in most
practice improvement or evidence translation
projects—randomization of people or sites to
different treatment groups is not an option. For
practical reasons, innovations often need to be
implemented on a unit-wide or institution-wide
basis in health care settings. In such circumstances,
researchers assess the innovation’s effects
using quasi-experimental designs without
randomization. In the nursing literature, for
example, slightly more than half of intervention
studies use a quasi-experimental design (Polit &

Gillespie, 2009; Polit, Gillespie, & Griffin,
2011).
Some quasi-experimental designs involve the

use of a comparison group, but others do not.
When researchers cannot use a comparison
group to test the effects of an innovation, they
sometimes use a simple one group before–after
design. That is, they gather outcome data from
a sample prior to and after the innovation, to
see if there are improvements. Such a design is
vulnerable to several threats to internal validity:
improvements could be caused by time-
dependent changes (maturation), by external
events (history), by changes in the population
over time (selection), and so on.
One of the more rigorous single-group quasi-

experimental designs is the interrupted time
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series (ITS) design (Shadish et al., 2002). In a
time series design, outcome data are collected
repeatedly over a long period both before
and after the intervention, to assess whether a
change occurred, however, relatively few
researchers have adopted an ITS design for
testing interventions or practice changes. For
example, in a consecutive sample of 428
nursing intervention studies published in 16
journals between 2007 and 2009, none used a
true time-series design (Polit et al., 2011). One
impediment to using ITS is the need for a very
large number of observations over time: 100 or
more are considered optimal (Shadish & Cook,
2009). Another obstacle is the complexity of
time series analysis.

An alternative to a standard time series
approach is to use statistical process control
(SPC) analysis to assess the effects of an
intervention. SPC, a powerful strategy and set
of methods for understanding variation, was
developed in the 1920s by Walter Shewhart, a
physicist working at Bell Laboratories. SPC was
used originally in manufacturing as a quality
control tool for monitoring production processes.
In recent years, SPC has been used widely as a
method of testing the effects of quality
improvement efforts in health care settings. In
their review of SPC in health care improvement
research, Thor et al. (2007) found that SPC
had been used in diverse specialty areas and
countries to test hypotheses about improvements
for a wide range of health outcomes.

Only a handful of nurse researchers have
used SPC, and in most cases their studies were
not designed to test an intervention (e.g., Hyrkäs
& Lehti, 2003; Nelson, Hart, & Hart, 1994).
The paucity of research using SPC methods
may reflect nurses’ lack of familiarity with
this approach. The purpose of this article is
to provide a broad overview of SPC methods,
to describe some of its advantages and
limitations, and to illustrate its use in a study to
assess a nursing practice improvement called
Transforming Care at the Bedside (Chaboyer,
Johnson, Hardy, Gehrke, & Panuwatwanich,
2010).

The Basics of Statistical Process Control

Like traditional statistical methods, SPC is a
tool for disentangling variation. A central
element of SPC is the construction of control
charts that plot outcomes over time and that
display patterns of variation. Statistically

based decision rules help users to reach
conclusions about whether a process is stable
and predictable, or whether variation over time
reflects a statistically significant change. Thus,
SPC can be used to test hypotheses about
significant changes that occur as a result of
introducing an intervention.
To construct an SPC control chart, the user

needs measurements of an outcome variable
over a period of time. The variable can be a
continuous measure (e.g., diabetic patients’
HbA1c levels) or a count-type measure (e.g.,
number of patients with pressure ulcers). The
underlying premise is that measurements of any
process or characteristic will inevitably exhibit
some variation over time. In SPC, the goal is
to distinguish small, random fluctuations that
are normal (common cause variation) from
variations stemming from a specific source
(special cause variation). When there is no
special cause variation, the process is ‘‘in
control,’’ meaning that it is stable. A process
can be ‘‘out of control’’ (i.e., have statistically
significant special cause variation) for many
reasons, including the introduction of an
intervention deliberately designed to bring about
improvement.

Components of a Control Chart

A control chart is a dynamic line graph that
plots data over time. Time is represented on the
horizontal (X) axis, with measurements ordered
from left to right. Values for the variable being
plotted are on the vertical (Y) axis. Control
charts also include graphical elements designed
to distinguish common cause and special cause
variation. One such element is a centerline
that is the mean of a series of measurements.
Control charts also display lines for an upper
control limit (UCL) and a lower control limit
(LCL), which are calculated from the inherent
variation of the data and represent the limits of
random variability. Control limits are computed
using formulas that are specific to the type of
control chart needed for the type of data being
plotted, as described later. The upper and lower
control limits, set to 3 standard deviations (SDs)
from the mean, establish margins within which
the data will be found approximately 99% of
the time.
Figure 1 illustrates a control chart showing

data for mean pain levels on a 100-point scale,
for samples of 10 intensive care unit (ICU)
patients measured 24 hours post-surgery each
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week for 20 consecutive weeks. In this
hypothetical example, the overall mean is 70.0,
the SD is 3.3, the UCL is 80.0, and the LCL is
60.0 (i.e., each control limit is 3 SDs from the
center line). In all 20 weeks, the mean pain
levels were contained within the control limits,
and so pain levels were ‘‘in control.’’ If nothing
in the hospital or the patient population
changed, the mean pain rating in week 21
would be expected to fall within the control
limits. Note that being in control is not inherently
desirable or undesirable—the term is used to
denote a process that is stable and predictable.
Stability can occur at favorable or unfavorable
levels.

Tests for Special Cause Variation

Control charts can be used to identify statistically
significant special cause variation using
straightforward tests based on probability
theory. Although there are many tests, the most
fundamental is a single data point outside the
control limits. For example, if the mean pain
rating in week 21 (Fig. 1) were 85.0, a search
for the cause of this spike in pain levels should
be initiated because the elevated mean pain
rating in week 21 indicates special cause
variation that is statistically significant (i.e.,
beyond chance levels for a stable process).

Three other tests are widely recommended as
evidence of significant special cause variation
(Amin, 2001; Benneyan, Lloyd, & Plsek, 2003;
Carey, 2002a):

� A run of eight or more consecutive points
that fall on one side, either side, of the
center line or mean (Fig. 2A, weeks 21–28).

� A run of six or more consecutive points
consistently increasing or decreasing, called
a trend (Fig. 2B, weeks 22–28). A trend can
cut across the centerline, as it does in
this example. If there are more than 21
data points, a run of 7 is sometimes
recommended to declare a trend (Amin,
2001; Carey, 2002a).

� Two of three consecutive points more than 2
SDs from the mean on the same side of the
centerline (Fig. 2C, weeks 27–28).

In Figure 2, a vertical line at week 20
signifies the introduction of an intervention to
reduce pain. The hypothesis being tested is that
pain ratings will be significantly reduced after
the intervention is implemented. Pain ratings
are in control before the innovation, but all
three patterns in Figure 2 indicate a statistically
significant change (a special cause) in the weeks
following the intervention.
Just as in traditional hypothesis testing, SPC

analysts face risks of error in statistical
decision-making. A Type I error occurs when
the analyst decides that a special cause occurred
when there was actually only common cause
variation. A Type II error is made when the
analyst concludes that there is no special cause
variation, when one is actually present.
Although a 2 SD criterion is common when
testing a one-time hypothesis, control charts
involve many data points. Each point can
contribute to an overall false positive probability,
as in multiple comparisons that often should
require Bonferroni-type corrections. Decades of
experience with SPC, as well as statistical
theory, support using the three-SD control limits
as a means of achieving a reasonable balance
between the two types of risks (Benneyan et al.,

FIGURE 1. Example of a control chart for an in-control process: patients’ pain ratings over a 20-week
period, for random samples of 10 ICU patients per week.
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2003; Mohammed, Worthington, & Woodall,
2008). For example, a control chart with 25
points using 3 SD control limits has a reasonably
acceptable overall false positive probability of
.065 (1 � [.9973]25). Wheeler (2004), a statistical
expert in SPC, has presented strong arguments
in support of the 3 SD limits.

SPC Requirements and Design Issues

SPC can be used with virtually any type of data
collected sequentially. As discussed in the next

section, different control charts are needed for
different types of data, but simple guidelines
facilitate selection of the proper chart.
Researchers using SPC have to decide how

many data points to plot on the control chart,
which in turn can affect decisions about the
level of data aggregation. Most experts advise
using at least 20–25 data points to be confident
about distinguishing between special cause and
common cause variation (Benneyan et al., 2003;
Lee & McGreevey, 2002). Fewer than 20 data
points can lead to an unacceptably high risk of
a Type II error (missing a special cause). Using

FIGURE 2. Examples of control charts showing three tests for special cause variation, for average
ratings of patient pain over a 28-week period. In each chart, an intervention was introduced at week 20.
A: A significant runs test. B: A significant trend test. C: A significant test with 2 of 3 consecutive points
greater than 2 SD below the mean.
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more than 30 data points, however, can result in
a high risk of a Type I error (finding a spurious
special cause).

In testing hypotheses about the effects of an
innovation, it is advisable to obtain baseline
evidence that the process is in control (Amin,
2001; Speroff & O’Connor, 2004), meaning
that ideally 15–20 data points are used as a
baseline. In the post-intervention period, data
collection can continue for a similar period or
until a test signals a significant special cause. In
testing an intervention, values for the centerline
and control limits often are ‘‘locked in’’ or
frozen at baseline levels, to assess whether the
process is significantly different from the old
one after making a change (Amin, 2001; Carey,
2002a).

Researchers sometimes can modify the
number of available data points by using
different units of aggregation. For example, the
number of medication errors per week yields
more data points than number of errors per
month. However, the decision about the unit to
use (called a subgroup in SPC parlance) must
be rational. It makes little sense to use daily
counts of a rare event, for example, because on
most days the value would be 0.

A separate design issue concerns sampling
for each data point. Some control charts can
plot individual values (n ¼ 1 in each subgroup),
but most control charts have data points that
represent aggregated data from a sample. Some
possibilities for a sample include all patients in
a week, a random sample of 50 people per
month, and sequential subgroups of 10 patients,
irrespective of time unit. Random sampling is
advantageous when a subgroup would have vast
amounts of data (e.g., number of medications
administered in the ICU). As with other statistical
methods, larger samples are more powerful
and sensitive than smaller ones. The larger the
sample for each subgroup (data point on the
control chart), the narrower the band of control
limits. Benneyan (2008) offered useful sample
size guidelines for different types of control
charts and different estimates of effect size.

Sample sizes per subgroup can be either fixed
or variable. Subgroups are often based on a
time period (e.g., a week, a month), and values
are plotted for all the relevant data from each
time period. This strategy usually results in
different sample sizes for each subgroup. For
example, if the outcome being plotted was the
proportion of patients in a hospital who fell
each month, the number of patients would likely
vary from month to month. When sample size is

the same across subgroups, as when a fixed
random sample for each time period is selected,
the control limits are shown on the control chart
as straight horizontal lines, as in Figures 1
and 2. For situations in which sample sizes vary
across subgroups, the control limits have a
stepped appearance, as will be illustrated later.

Types of Control Chart

A key decision in SPC concerns which type of
control chart to use, and that decision depends
on the nature of the data. Although dozens of
types of control charts have been developed,
four that are frequently used are briefly
described here. Table 1 summarizes key features
of these four types of control chart.
The first step is to determine whether the data

are from a measurement that yields continuous
data. Examples of such outcomes include length
of stay in hospital and blood pressure values.
Variables such as these are usually plotted
on X-bar and S control charts (where ‘‘X-bar’’
signifies the mean and ‘‘S’’ signifies the
standard deviation).
Other data types of interest are counts of

events or attributes. Examples of count-type
outcomes are number of nosocomial infections
and number of patient complaints. Counts can
be expressed in several different ways, and the
choice of expression drives the chart to be used.
Three types of chart for count-type data are the
P-chart (for proportions), the U-chart (for
‘‘unequal area of opportunity’’), and the C-chart
(for ‘‘constant area of opportunity’’), as
explained later.
Researchers often have choices about how to

measure outcomes, and this affects which chart
to use. For example, suppose the outcome of
interest was use of restraints in a nursing home.
Restraint use could be captured as a continuous
variable (e.g., amount of time in minutes that
all residents spent in restraints in a week). It
might be measured as a proportion (e.g., the
proportion of residents who were ever restrained
in a week). Or, it could be measured as an
overall count of occurrences (e.g., total number
of episodes of restraining residents per week).
Charts for continuous (interval- or ratio-level)
data are more powerful than charts for count or
attribute data (Carey, 2002a).
X-bar and S charts. The X-bar and S control

charts use continuous data and are based on a
normal distribution. X-bar and S yields two
separate, paired control charts. The first chart
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plots mean values (X-bar) over time on a
continuous variable, and the second corresponding
chart plots standard deviation (S or sigma)
values over time. Figure 3 presents an example

of an X-bar chart (A) and a sigma chart (B);
only 12 data points are plotted, to simplify the
presentation. In this example, patient satisfaction
with nursing care, measured on a 20-item scale,

Table 1. Four Major Types of Control Charts: Characteristics and Examples

X-Bar & S Chart P-Chart U-Chart C-Chart

Type of measure Continuous variable Proportion/rate data Ratio data Counts
Distribution Normal Binomial Poisson Poisson
Example of an

outcome
Time to extubation
after surgery
(minutes)

Proportion of patients
who had a fall

Patient falls per
100 patient days

Total number
of patient
falls

Control limit lines Straight or stepped Stepped or straighta Stepped Straight
Charts created Mean, variation Mean Mean Mean
Comments Use if number of

cases per data
point >1b

If sample size is
the same or
similar for each
data point, a
C-chart can be
used

aAn NP-chart can be used in lieu of a p-chart if sample sizes are equal (Amin, 2001).
bSome writers recommend using the X-bar & R (range) chart if the number of values per data point are between 2

and 9 (Amin, 2001). When N ¼ 1 per data point, an XmR (data values and a moving range) chart is used.

FIGURE 3. Example of an X-bar chart (A) and a sigma chart (B) plotting patient satisfaction with
nursing care on a 20-item Likert scale over a 12-month period
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is plotted over 12 months, and the process is in
control.

In X-bar charts, each data point is the
subgroup mean for the outcome, and the
centerline is the mean of all the means. When
the sample size for each subgroup is constant,
the control limits are horizontal lines above and
below the centerline, but the lines are stepped
when sample size varies across subgroups.
Figure 3 shows stepped UCL and LCL lines,
because the number of patients completing the
patient satisfaction scale varied from month to
month. Both the X-bar and the S charts have a
centerline and control limits, and so either chart
can indicate special cause variation. The sigma
chart communicates whether there might be
special causes within each subgroup (i.e., an
outlier), whereas the X-bar chart communicates
whether the process is stable over time. X-bar
charts should be interpreted cautiously when a
sigma chart indicates instability. Both charts
should be presented when X-bar and S control
charts are used (Carey, 2002b).

Some writers advise that X-bar and S charts
are appropriate only when the subgroup sample
size is 10 or more (e.g., Amin, 2001; Lee &
McGreevey, 2002). When the sample size for
each data point is between 2 and 9, X-bar and R
(range) charts, not described here, can be used
(Amin, 2001). XmR (moving range) charts, also
not described here, can be used to plot values
on continuous outcomes for individual values.

P-charts. A P-chart is used when the data
points represent proportions, which follow a
binomial distribution. For example, a P-chart
could be used to plot, for a specified subgroup
sample, the number of patients who fell, divided
by all patients. In a P-chart, the subgroup
sample is divided into two mutually exclusive
categories, and each person is counted only
once. In our example, each patient either fell or
did not fall, and the total of the two proportions
adds to 1.0. P-charts are widely used in quality
improvement studies, where the goal is often to
examine whether a quality standard is met or
not. The control limits on P-charts can be either
straight lines or stepped, depending on whether
the sample size across subgroups is constant.

C-charts and U-charts. Count data can be
of two kinds. In the language of SPC, which
originated in the context of quality control
in manufacturing, an analyst can count
‘‘nonconforming units’’ and record the result as
a proportion of all units. This yields data
amenable to plotting on a P-chart. Alternatively,
one can count all ‘‘nonconformities’’ or

instances—a count of the total number of some
event or characteristic. With counts of units, the
value is between .0 and 1.0, and the numerator
is never larger than the denominator. If 5 out of
10 patients fell in a week, the proportion would
be .50. But if all 5 patients who fell had 3 falls
each, the count of nonconformities (instances)
would be 15.
When the data are instances, the appropriate

chart is either a C-chart or a U-chart, both of
which rely on an underlying Poisson distribution
for calculating control limits. When there is a
‘‘constant area of opportunity,’’ which means
having the same or similar sample size for each
subgroup, a C-chart is used to plot the count of
instances. If, for example, there were 100
patients in a ward every month, a C-chart could
be used to plot the monthly number of instances
of patient falls. With patient falls, however,
an ‘‘unequal area of opportunity’’—varying
number of patients across monthly subgroups—
is more likely, unless a sample of a fixed size is
selected. With unequal sample sizes, data on
instances would be represented as a ratio (e.g.,
total number of patient falls per 100 patient
days) in a U-chart. Control limits on U-charts
are stepped, whereas control limits on
C-charts are straight lines. Both U-charts and
C-charts are useful for plotting rare events
(Mohammed et al., 2008) and both are more
powerful than P-charts for detecting special
causes (Carey, 2002a).

Assumptions in SPC

SPC control charts have associated assumptions.
In charts that use measurement-type data, such
as X-bar and S charts, there is an assumption of
normality and equality of variances. However,
control charts have been found to be robust to
violations of these assumptions, especially if
the subgroup size exceeds 10 (Mohammed
et al., 2008; Woodall, 2006). Mohammed and
colleagues argued that even with severely
skewed data, a double square root transformation
often renders the data suitable for use in a
control chart.
A more challenging assumption that is

relevant for all the control charts discussed in
this paper is the assumption of independence. It
is assumed that the observations (subgroup
values) are independent of each other, as is also
true of most standard statistical tests. Time
series data often violate the assumption of
independence. When data are generated over
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time in the same clinical setting in the same
population of patients cared for by the same
staff, it is likely that the data points are not
totally independent—that is, they will be
autocorrelated to some degree. This would also
be true, of course, in a standard pretest–posttest
design from a single clinical setting if a pre-
intervention group of patients were compared to
a post-intervention group of patients using,
for example, independent group t-tests or
chi-squared tests. The issue of autocorrelation
in widely used pretest–posttest designs is almost
always totally ignored. However, the problem
of autocorrelation may be more severe in time
series-type designs because the same people
might be in the sample for more than one
subgroup.

Autocorrelation can be minimized by including
different people in the various subgroups,
to the extent possible. This is often easier to
accomplish when the subgroup periods are
longer. For example, in a study of hospital falls,
monthly subgroups would likely have less
overlap of patients than weekly subgroups.
Wheeler (2004) has shown that when autocorre-
lations are modest, control limits still work
well. When the correlation is large (that is,
when a lag-1 correlation coefficient r exceeds
.60), a correction factor to the control limits
might be needed. Several authors have
presented detailed information on corrections
for both continuous and count data (e.g.,
Borckhart et al., 2006; Madan, Borckardt, &
Nash, 2008). Thus, autocorrelation should be
assessed when the risk of nonindependence is
high. Madan and colleagues have offered a
free downloadable program for detecting
autocorrelation and making needed adjustments.
Also, Benneyan (2008) described alternative
control charts that can be used when autocorre-
lation or strong seasonal or cyclical effects on
the outcomes render the charts described in this
article inappropriate. Several authors of SPC
textbooks also have described advanced
approaches for dealing with autocorrelation
(e.g., Montgomery, 2009).

Practical Issues in Using SPC

It is straightforward to compute SPC data
values, which are simply counts, means, or
proportions. As a preliminary step in SPC, some
analysts construct a simple line graph called a
runs chart, which can be created without
specialized software. A runs chart is useful

when there are not yet enough subgroups for a
control chart. A runs chart simply plots the
sequential data values with a centerline added,
but not the control limits. If the data values are
for a measured variable or a raw count, the
centerline is the mean of all values. If the data
values are proportions, the centerline is the sum
of all numerators divided by the sum of all
denominators. Even without control limits, runs
charts can be used to detect significant special
causes, using rules for trends and runs.
Control charts are more powerful than runs

charts, but require computer software for
calculating control limits. Spreadsheet software
such as Microsoft Excel can be used for SPC,
but dedicated SPC software has proliferated,
and widely used statistical packages such as
SPSS now offer SPC analysis.

Advantages and Limitations of
Statistical Process Control

Like other approaches to collecting and
analyzing data, statistical process control has
both attractive and undesirable features that
should be taken into consideration in deciding
whether to use it.

Advantages and Benefits of SPC

SPC is a rigorous, flexible approach to analyzing
data for processes and outcomes that can be
tracked over time. SPC can be used with data of
various types, and the data can be grouped in
various ways, including temporal groupings
(e.g., monthly) or sequential groups of a fixed
size (e.g., 20 consecutive patients). The rules
for interpreting a special cause as statistically
significant are easy to comprehend. Moreover,
special cause variation such as the effect of an
intervention can be detected in real time, that is,
as the data are being collected rather than
waiting for an arbitrary point in time. Thus, a
decided advantage of SPC is the timeliness of
the results.
Another attractive feature of SPC is that

the control charts are a powerful means of
communicating results to lay audiences or
clinical personnel who are unfamiliar with
statistical tests, probability values, effect sizes,
and confidence intervals. The comprehensibility
and transparency of control charts make SPC an
important tool for evidence-based practice, and
for translational research.
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Because of its ability to capture data in a
time perspective, SPC is more powerful and
compelling than using a simple pretest–posttest
design in which data are aggregated into two
groups (Benneyan et al., 2003). SPC is also
simpler and more flexible than a traditional
time-series analysis and does not require as
many data points. Thus, SPC is a particularly
valuable tool for intervention researchers who
find that they are not in a position to randomize
either individual participants (a standard RCT)
or sites (cluster trials). Additional virtues of
SPC are that it is less costly than an RCT and
may result in higher rates of participation by
patients who resist randomization, which in turn
could yield more representative samples. Diaz
and Neuhauser (2005) argued that there are
situations in which SPC is better than an RCT,
particularly when evidence is needed for a
change that can be implemented quickly.

Although this article has focused primarily on
the use of SPC in intervention research, it is
an approach that can be used in observational
studies as well. For example, it could be used to
describe the stability of an outcome or event in
a particular setting, such as the incidence
of confusion in a nursing home, or to explore
instability stemming from events outside of
researcher control (e.g., staff turnover). Finally,
SPC can also be a useful monitoring tool
within an RCT because of the timeliness of
the information. For example, in testing a new
intervention to reduce the risk of pressure
ulcers, SPC could provide real-time feedback
that could be used to make decisions about
stopping the trial if there is evidence of harm to
either group.

Disadvantages of SPC

An impediment to using SPC is that many
researchers are not familiar with it, and so they
may not feel comfortable designing a study
with this approach. Some may prefer a
traditional strategy (e.g., a pretest–posttest
design with t-tests) to an approach that would
require special training or consultation with a
statistician. It is hoped, however, that this article
will help to demystify SPC and demonstrate its
potential utility.

Despite its many advantages, the use of SPC
in intervention research is not without some
limitations. The issue of autocorrelation, for
example, is a thorny one and needs to be
considered and explored.

Another issue concerns potential threats
to internal validity that can result when a
nonrandomized design is used to assess
intervention effects. Internal validity concerns
the degree to which it can be inferred that
an intervention, and not something else, is
responsible for special-cause improvements.
Like a traditional time series, the most salient
potential threat is history—that is, the threat
that some external, co-occurring event, and not
the intervention, is causing change. This threat
might be especially salient if an intervention
does not have immediate, dramatic effects, or if
there is a time lag between implementing the
intervention and assessing outcomes. In such
situations, there may be greater ambiguity
about the underlying cause of special effect
variation if other forces are at play. As with any
quasi-experimental approach, SPC requires
researchers to conceptualize possible threats and
to apply logic and empirical evidence to rule
them out (Shadish et al., 2002).

Case Study of SPC: Transforming
Care at the Bedside

In concluding this article, key features of a
recently completed quasi-experimental study
that used SPC are summarized to illustrate
several features with real data. The research
focused on Transforming Care at the Bedside
(TCAB), which was developed by the Robert
Wood Johnson Foundation and the Institute for
Healthcare Improvement (IHI) to improve both
patient care and nurses’ experiences when
working in hospitals (Rutherford, Lee, &
Greiner, 2004). A team of researchers recently
examined the association between implementing
TCAB and three nursing-sensitive patient
outcomes on two medical units and one
rehabilitation unit in an Australian hospital
(Chaboyer et al., 2010). Like many other
healthcare innovations, TCAB was adopted
without an a priori formal evaluation plan.
Thus, when the research team became involved,
TCAB was already being implemented, which
meant that only routinely collected administra-
tive data were available as a baseline for assess-
ing the effect of TCAB.
One option available to the research team for

evaluating TCAB was to access clinical incident
data that were reported on a monthly basis.
These routinely collected, deidentified data
reflected the incidents reported for all patients
on the ward each month. Monthly data were
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available for 14 months before and 19 months
after TCAB was implemented. Had quarterly
aggregate data been used, it would have resulted
in too few data points to confidently establish
normal, random (i.e., common cause) variation.
Data were available on many types of clinical
incidents, but three were of particular interest
because they are considered nursing-sensitive
patient outcomes (Van den Heede, Clarke,
Sermeus, Vleugels, & Aiken, 2007): medication
errors, falls, and pressure ulcers. For the
purpose of illustrating the use of SPC, the
example of medication errors is used here. The
database included information on whether a
reported incident caused patient harm. Thus, in
addition to the total number of incidents
reported, data were available about the
consequence of the incidents. In terms of SPC,
this meant that discrete data were available to
calculate proportions. Specifically, one outcome
was the proportion of medication errors that
were associated with patient harm. For example,
in June 2005 a total of 12 medication errors
were reported, and 10% or 83% of them were
associated with patient harm. These data met
the criterion for using a P-chart to assess
changes in the proportion of harmful medication
errors before and after TCAB.

Figure 4 shows the P-chart (with the upper
and lower control limits set at 3 SDs) for the
proportion of medication errors associated with
harm in the 14 months prior to and 19 months
after May 2006 when TCAB was implemented.
In this example, the mean and the control
limits are locked at baseline values. The mean
pre-intervention proportion of harm from

medication errors was .699, the upper control
limit was 1.00, and the lower control limit
was .14. The very broad range for the control
limits reflects the relatively small number of
monthly medication errors (i.e., small subgroup
samples). Prior to May 2006, the process was
‘‘in control’’ within a broad band of values.
When considering the tests for special cause

variation following the TCAB intervention, the
proportion of medication errors resulting in
harm dropped to .00 in the very first month after
May 2006. This was below the 3 SD lower
control limit established for baseline values,
indicating that significant special cause variation
was present immediately after TCAB was
introduced. All 19 points after May 2006 fell
below the center line indicating a ‘‘run’’ of
special cause variation, further suggesting that
TCAB had a beneficial effect on harmful
medication errors. Although not shown in
Figure 4, the data met another test for special
cause variation following the implementation
of TCAB: two out of three consecutive points
(indeed, 17 out of 17 consecutive points, from
August 2006 to December 2007) were more
than 2 SDs from the mean on the same side of
the center line.
In this example, the dramatic reduction in

harmful medication errors could have been
discerned using traditional hypothesis tests. For
example, a chi-square test could be used to
compare the overall proportion of harmful
medication errors in the 14 months before to the
19 months after the intervention was introduced,
which was 70.0% and 2.0%, respectively
(x2 ¼ 99.7, df ¼ 1, p < .001). The advantage
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FIGURE 4. P-chart for proportion of medication errors resulting in harm, for 14 months before and
19 months after implementing Transforming Care at the Bedside in May 2006.
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of SPC, however, is that results are available in
real time—the data met the test for special
cause as early as June 2006, and by
October 2006 the changed pattern was clearly
established. In a more traditionally designed
study, data collection would likely have
continued many months beyond the point that
would be necessary with SPC.

As noted in an earlier section, SPC helps to
identify when variation is significantly greater
than expected from random fluctuations, but
interpretation of the factors responsible for
special cause variation relies on analyses of
potential threats to internal validity. In this
example, although process improvement coincided
with the introduction of TCAB, other factors
may have contributed to this improvement. For
example, a change in patient acuity or nursing
skill-mix could have occurred after May
2006. Information on these two alternative
explanations was not available. Nevertheless,
the appearance of immediate and sharp changes
following the implementation of TCAB supports
the interpretation that TCAB led to improved
outcomes. As another cautionary note, the use
of routinely collected clinical incident data
reflected only what was reported, not necessarily
all that occurred (Chaboyer et al., 2010). Thus,
SPC is a very useful analytic method, but like
other statistical tests, it cannot totally overcome
design limitations such as a lack of control of
other potential confounding variables, and issues
such as reliability and validity of routinely
collected data.

One final issue concerns external validity,
which is an issue in any single-site study.
Replication of these SPC findings is essential
before generalizing the evidence to other settings
and people. In the TCAB study, significant
improvements were observed on three separate
hospital units, and TCAB evaluations in other
sites are currently underway.

Conclusion

Given the difficulty of conducting RCTs in
clinical settings, and the recurring issue of
evaluating unit-wide practice changes, SPC
offers a powerful and versatile mechanism for
testing possible improvements using data that
might already be available over a period
of time. The timeliness of the results is an
important advantage. This article introduces
SPC as an important tool for thinking about
alternative research designs, but those interested

in using this approach are encouraged to pursue
this topic in more detail in the voluminous
literature on SPC.
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